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ABSTRACT

There is a strong analogy between the sinusoidal operator
used in FM synthesis, and the resonator filter. When im-
plemented in a direct-form structure, a resonator filter is
not suitable for use as a substitute for an FM operator, as
it is not stable under centre frequency modulation. Recent,
more robust resonator filter structures have made this use a
possibility. In this paper we examine the properties of this
structure that makes it appropriate for this application, and
describe how a network of these filters can be combined
to form a dynamic FM synthesis network. We discuss the
possible range of sounds that can be produced by this struc-
ture, and describe its application to a performance system
for improvised electroacoustic music.

1. INTRODUCTION

FM synthesis [1,2] and resonator filters [3–5] are both ma-
ture topics in digital audio signal processing. Resonators
can in some ways be thought of as a generalisation of a si-
nusoidal oscillator that can take arbitrary input. Indeed, in
the physical world, oscillators are often resonators which
are driven in some way. Hence, we have a strong anal-
ogy between resonators and the sinusoidal operators at the
heart of FM synthesis. This raises the question – what
would an FM synthesiser-like structure constructed out of
resonators and driven by an audio-signal sound like? Digi-
tal filter design has traditionally been dominated by direct-
form topologies, which generally have poor time-varying
properties. This deficiency seems to have discouraged any
development of this idea. This situation is in contrast to
the analog synthesis world, where audio-rate modulation
of filters has been part of the standard repertoire of tech-
niques since the beginning.

Previous work on the use of time-varying linear filters
outside of audio signal processing exists [6–8], and has
recently been applied in the analysis of the behaviour of
Feedback-AM synthesis [9]. Feedback-AM synthesis can
be considered to a be technique based on time-varying fil-
ters, and this analogy has been extended to second-order
filters, including the direct-form resonator filter [10]. How-
ever, the poor time-varying stability of the direct-form fil-
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ter means that this exploration has been limited to very low
modulation depths.

In 2003, the late Max Mathews proposed a better be-
haved implementation of a resonator based on the idea of
complex multiplication [11]. This structure is anecdotally
reported to be completely stable under modulation of its
parameters. This work has unfortunately seen little atten-
tion in the time since, although some analysis of coefficient
interpolation schemes has been performed [12]. The res-
onator design proposed by Mathews is termed the ’phasor
filter’ or the ’complex resonator’, the latter of which is the
term used hereforth.

In this work, the idea of an FM synthesiser-like configura-
tion of complex resonators is explored - with arbitrary au-
dio input and the natural decay of the resonators taking the
place of envelopes in defining the dynamic behaviour of
the sound. In Section 2, we review the complex resonator
structure, derive some useful properties of the structure,
and examine the output it produces under audio-rate modu-
lation of its centre frequency. In Section 3 we describe how
a number of complex resonators can be combined into an
FM synthesis network, and qualitatively examine the range
of sounds which this structure can produce. In Section 4,
we describe how this system has so far been applied in
practice to produce musical performance systems. In Sec-
tion 5, we conclude.

2. THE COMPLEX RESONATOR

The complex resonator is a system first introduced by Math-
ews and Smith [11]. It arises from the observation that
multiplication of a complex number by a complex coef-
ficient is equivalent to rotation around the origin on the
complex plane. If we take a complex number x = rei✓

and multiply it by itself, the result is x2
= r2e2i✓. If we

repeat the multiplication n times, we have xn

= rneni✓.
It should be clear that this process represents a continuous
rotation around the origin. If |x| < 1, this motion is an
in-going spiral. If |x| > 1, the motion is an out-going spi-
ral. If |x| = 1, the motion is a circle around the origin.
We can see that this circular motion is analogous to a res-
onance, with the angular velocity of the motion (defined
by ✓) being the frequency of the resonance. We can write
this process as a pair of difference equations in terms of the
real and imaginary parts of the product, and hence derive a
system that looks very much like a digital filter:
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xRe[n+ 1] = r cos(✓)xRe[n]� r sin(✓)xIm[n],

xIm[n+ 1] = r sin(✓)xRe[n] + r cos(✓)xIm[n] (1)

If we add an input u[n] to the real part, and take an output
y[n] from the imaginary part we can write the system in
state space form:

x[n+ 1] = Ax[n] +Bu[n]

y[n] = Cx[n] (2)

where

A =


r cos(✓) �r sin(✓)
r sin(✓) r cos(✓)

�
,B =


1

0

�
,C =

⇥
0 1

⇤

As we intend in this paper to use the system as a resonator
and not as a pure oscillator, it makes sense to parameterise
r in a more intuitive way. Instead, we would like to specify
a decay time for the response of the filter. Intuitively from
understanding the system as a repeated rotation, we can see
that the reduction in amplitude at each sample step is given
by multiplying by r. This clearly describes an exponential
decay. Therefore, we can calculate a desirable value of
r from a decay time ⌧ , using the equation r = e�

1
⌧fs ,

where f
s

is the sampling frequency. It is also worth noting
that we can trivially convert from unity sampling period
angular frequency ✓ to a centre frequency with arbitrary
sampling period by the relation ✓ =

fc

2⇡fs
where f

c

is the
centre frequency and f

s

is the sampling frequency.

2.1 Normalization

In the form described above, the resonator structure pos-
sesses a large gain at its resonant peak. For more pre-
dictable use of the resonator in larger signal processing
structures, particularly those involving feedback, it is de-
sirable to normalize the filter so that its peak gain is unity.
Also, since we are planning on modulating the filter’s cen-
tre frequency at audio rate, any fluctuations in peak am-
plitude will introduce additional sidebands due to ampli-
tude modulation. The normalisation should minimise this
problem. First, the system is expressed in transfer function
form:

Hres(z) =
r sin ✓z�2

1� 2r cos ✓z�1
+ r2z�2

(3)

Assuming unity sampling period, and that the peak gain
is at the specified centre frequency of the filter (which is
correct apart from very close to DC or Nyquist, where the
poles interfere with each other), we have:

Hres(e
i✓

) =

r sin(✓)e�2i✓

1� 2r cos(✓)e�i✓

+ r2e�2i✓

=

r sin(✓)

(1� r)(e2i✓ � r)
(4)
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Figure 1. Extract from output of modulated complex res-
onator, excited with an impulse. Time-domain behaviour
at a point near to the start of the decay (top), 4096 sample
STFT taken at same point (bottom).

and therefore

|Hres(e
i✓

)| =
����

r sin(✓)

(1� r)(e2i✓ � r)

����

=

q
r2 sin2(✓)

(1� r)
q
(cos(2✓)� r)2 + sin

2
(2✓)

=

r
q

1
2 (1� cos(2✓))

(1� r)
p
1 + r2 � 2r cos(2✓)

. (5)

This expression could be used to normalize the peak gain
of the filter to unity, however it is rather complex and cal-
culating it every time the coefficients are updated would
be computationally expensive. With some further analysis,
we can construct a simpler approximation to this expres-
sion. By observation, we can see that the maxima of the
magnitude should occur at ✓ =

⇡

2 . Taking a Taylor expan-
sion around this point, we have:

|Hres(e
i✓

)| ⇡ r

1� r2
� (1� r2)

2(1 + r)3

⇣
✓ � ⇡

2

⌘2
+O

h
✓ � ⇡

2

i3

(6)

Examining the first two terms of the series, we see that
as r ! 1,

��� r

1�r

2

��� �
��� (1�r

2)
2(1+r)3

���. The same is true of the
higher-order angle-dependent terms. For the purposes of
this work, the resonator is generally used with ⌧ on the
order of 0.01 seconds and upwards. This corresponds to a
resonance of r = 0.9977 or higher at a sampling rate of
44.1kHz. Therefore, for these purposes we can make the
approximation

|Hres(e
i✓

)| ⇡ r

1� r2
(7)

which can be used to normalize the peak gain of the res-
onator. The peak gain will still fall to zero when the centre
frequency is exactly at DC, but the normalization holds un-
til very close to this point.

It is also possible to exactly normalise the filter with re-
spect to varying centre frequency by using the method de-
scribed by Smith et al. [3], and inserting two zeros at z =
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±
p
r. This would be achieved by adding an un-attenuated

path from the input to output of the system, and by in-
verting the input to the first state and dividing it by sin(✓).
However, this multiplication is problematic as it results in a
divide-by-zero when the centre frequency is exactly at DC.
Given that we may want to allow the centre frequency to
take on negative values (to allow large modulation depths),
this is unacceptable. This method also produces extremely
large signal values at the input to the first state when the
centre frequency is close to DC, which will cause numeri-
cal issues in fixed-point architectures.

2.2 Time-varying stability

As the filter will be modulated at audio rate, it is wise to
examine its stability under time-varying conditions. In-
tuitively, it seems that it should be stable under arbitrary
modulation of r and ✓ as long as |r| < 1, as the rota-
tion that these parameters represent will always be fol-
lowing an in-going spiral. We can express this formally
by applying the sufficient (but not necessary) condition
for bounded-in bounded out (BIBO) stability of a time-
varying filter described by Laroche [13] – which is that
||A(n)||2 =

p
�
max

(A⇤A) < 1, 8n where ⇤ denotes the
conjugate transpose and �

max

is a function which returns
the maximum eigenvalue of its argument. Examining A in
the case of the complex resonator, we have:

||A(n)||2 =

p
�
max

(A⇤A)

=

s

�
max

✓
r2 cos2(✓) �r2 sin2(✓)
�r2 sin2(✓) r2 cos2(✓)

◆

=

p
r2 (8)

which gives us the condition that |r(n)| < 1, 8n which
in this case is simply the normal time-invariant stability
condition of keeping the eigenvalues of the state transition
matrix within the unit circle.

2.3 Output of a frequency modulated complex
resonator

Figure 1 shows a small extract from the signal produced by
a resonator when the centre frequency of f

c

= 1028 Hz is
modulated with a 642 Hz sinusoid with a modulation depth
of 998Hz. The decay time ⌧ of the filter is 2 seconds. The
filter is excited with an impulse. Note that we use absolute
modulation depth to denote the amount of modulation, as
the usual FM synthesis concept of modulation index is not
meaningful in the general case where we do not know the
content of the modulating signal.

The sound is like that of a simple struck bell. The re-
sponse has an exponentially decaying envelope, as would
be expected in the case of an unmodulated resonator. Us-
ing a different signal as input allows a variety of dynamic
behaviours. As the bandwidth of the filters is very narrow,
only very little of the input sound is recognisable. The in-
put acts more as a way of controlling the amplitude and
spectral balance of the output signal, with the sound out-
put being dominated by distributions of sidebands of the

carrier frequency (in this case centre frequency) consistent
with those present in standard FM synthesis [1, 2].
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Figure 2. Waveform and spectrogram of cascaded four-
resonator system, excited by an impulse.

3. RESONATOR FM NETWORKS

We define a resonator FM network as a vector S of res-
onator systems parameterised by a time-invariant (or slowly
changing) centre frequency f

i

, a time-varying frequency
offset a

i

and a decay time ⌧
i

.

S =

0

BBB@

S1(f1 + a1, ⌧1)
S2(f2 + a2, ⌧2)

...
S
i

(f
i

+ a
i

, ⌧
i

)

1

CCCA
(9)

This vector of systems has a state space representation of
its own, given by:

�[n+ 1] = ↵[n]�[n] + �u[n]

�[n] = c�[n] (10)

where

� =

0

BBB@

x1

x2
...
x
i

1

CCCA
, � =

0

BBB@

y1
y2
...
y
i

1

CCCA
,↵ =

0

BBB@

A1 0 . . . 0

0 A2 . . . 0

...
...

. . .
...

0 0 . . . A
i

1

CCCA
,

� =

0

BBB@

b1B 0 . . . 0

0 b2B . . . 0

...
...

. . .
...

0 0 . . . b
i

B

1

CCCA
, c =

0

BBB@

C 0 . . . 0

0 C . . . 0

...
...

. . .
...

0 0 . . . C

1

CCCA
.

(11)

The x
i

are the individual state vectors of each filter. The
A

i

are the state update matrices. The y
i

are the filter out-
puts. B and C are as defined in (2), and the b

i

are the
coefficients representing the gain of the input signal to the
input of each filter. We also define an expression for the
overall output of the parallel systems:

Y [n] =  · �[n] (12)
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Where  is the time-invariant (or slowly varying) vector of
output mixing coefficients 

i

.
The vector a of centre frequency offsets is calculated from

the output of the resonators as follows:

a[n+ 1] = ��[n] (13)

We term � the FM feedback matrix. Since the outputs �
are bounded by the maximum amplitude of the input signal
(and likely much lower), the elements of � must be quite
large – of the order of the depth of frequency modulation
in Hz required. In fact, they are not absolute modulation
depths but instead place an upper bound on the depth of
modulation of a particular resonator by a particular output.

The behaviour of the system is governed by the vector of
centre frequencies f , decay times ⌧ and �. Since each in-
dividual resonator system has unity peak gain and is com-
pletely stable under coefficient modulation, the overall sys-
tem should also remain stable regardless of the values of
�. We can also make some general observations about the
relationship between the output of the system and the con-
tent of �. For example, ||�|| gives a measure of the overall
depth of modulation, and hence the extent of the FM side-
bands and the complexity of the timbre. Feedback loops
are generated by entries along the diagonal of �, and also
by symmetrical patterns in the upper and lower triangular
parts. When � contains only entries in the upper or lower
triangular part of the matrix (with the diagonal empty), the
system will be in a purely feedforward configuration.

Note that there is no connection between the outputs of
the resonators and any of the inputs of the resonators. All
of the resonators are excited only by the general input sig-
nal, albeit with different weightings. This is a specific
choice, and is crucial to the use of the system as a mu-
sical instrument as it means that the overall envelope of
the output of the system is predominantly a function of the
input and the resonator ringing times. A user can therefore
interact with the system in a relatively predictable way, in
that it only produces sound when some kind of excitation
is provided.

3.1 Results

Figure 2 shows the output of a system of four resonators
configured in a simple feedforward configuration and ex-
cited by an impulse. The centre frequencies are distributed
irregularly, and the modulation depths are around 1000Hz.
The resulting sound is reminiscent of the idiophones used
in Indonesian Gamelan music. Exciting the system with a
more complex signal produces strong dynamic behaviour.
Low amplitude inputs sound like brushing or blowing on
a complex resonant object. Stronger inputs produce ex-
tremely dissonant and non-linear behaviour (although the
system remains technically linear, just not LTI).

The dynamic behaviour of the sound is completely de-
pendent on the nature of the input signal, and the natural
exponentially decaying envelope of the resonators. This
imparts a more organic quality to the sound than the pre-
cisely defined envelopes used in traditional FM synthesis.
Standard FM synthesis strategies can be used when decid-

ing on the topology of connections between resonators and
their centre frequencies.

4. APPLICATIONS

LeakDC
Compar 1

Compar 3

Compar 2

room mic

feedback

performance space

Compressor

Reverb

Mix

Mix

Lowpass

Limiter

ComplexRes 
network

ventilation
cushion

Figure 3. Overview of the performance setup.

The above described resonator network was implemented
for practical use, and applied in a performance situation.

4.1 SuperCollider implementation

The complex resonator filter was implemented as a unit
generator plugin (UGen) for SuperCollider 1 [14]. It has
the interface

ComplexRes.ar(in, freq, decay)

where in is the source signal, freq the resonance fre-
quency ✓ and decay the decay time ⌧ in seconds.

Both SuperCollider code and sound examples for such
networks can be found at the webpage accompanying this
publication. 2

4.2 Performance setup

The SuperCollider ComplexRes implementation was used
in two consecutively developed setups: Compar is a feed-
forward resonator network featuring three ComplexRes
nodes. Its successor ComparFeedback implements an FM
feedback matrix. The number of nodes can be set when
defining the synthesis engine. ComparFeedback imple-
ments a superset of the Compar system.

In both designs, the complex resonator network was em-
bedded in a network of other processing structures. To re-
move unwanted DC offset, the input signal is processed
by a high-pass filter (LeakDC). After a mixing stage in
which the filter output is combined with the (low-passed)
raw signal, it is fed through a compressor and processed by

1
http://supercollider.sourceforge.net/

2
http://tai-studio.org/index.php/projects/

complexres/
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a reverberation unit. A schematic overview of the setup is
displayed in Figure 3.

Due to the increased complexity of the ComparFeedback
unit, it became evident that an extended graphical user in-
terface is needed compared to that for Compar (see Fig-
ure 5). However Compar features, despite its limitations
compared to ComparFeedback, a unique way of perfor-
mance which makes it a valuable instrument of its own.

Figure 4. Cushion-shaped musical interface made of con-
ductive yarn.

Both Compar and ComparFeedback were used as core
parts of a feedback-based performance setup, similar to
that described by Di Scipio in its general form [15]. These
performance systems were designed and implemented as
part of the project Electronic Music Practice for Neuro-
diverse People 3 . As shown in Figure 3, three copies of
the synthesis engine were used, each with a different in-
put: Compar 1 connected to a microphone placed in the
performance place, Compar 2 was wired to a contact mi-
crophone attached to a ventilation outlet, and Compar 3
processed the input of a cushion-shaped musical interface
made of conductive yarn which, when touched, renders a
noisy electrical signal (see Figure 4). The latter served as
a source of direct interaction with the sound.

The combination of all three elements created a drone-
like soundscape, grounded in the acoustic features of the
environment in which it was played. Particularly, the room-
modes of the performance space and the resonating fre-
quencies of the (already prominent) ventilation system had
a large impact on the resulting sounds. The setup was in-
spired by works such as Tudor’s Rainforest IV (1973) and
Lucier’s Music on a Long Thin Wire (1977).

Parameters such as input gain, filter frequencies, modu-
lation depths, decays and reverberation were controlled by
the artist during performance. Overall, the implemented
systems reacted in a stable manner and were intuitive to
play. Sonically, it created organic, FM-like sounds that
were highly dependent on the sound colour of the input
source: If noisy (e.g. in the case of the cushions), the re-
sulting sounds were noisy, too; the filter network mostly

3
http://tai-studio.org/index.php/projects/

deind/

Figure 5. ComparFeedback (left) and Compar GUI (right)

altered the noise colour and added short tonal elements. If
the input has a less noisy character the FM becomes much
more prominent, adding distinctive sidebands to the out-
put.

freq1

fm1

decay1

freq2

fm2

decay2

Complex
Resonator

freq3

fm3

decay3

in

out

freq
in decay

Complex
Resonator

Complex
Resonator

Figure 6. FM network in the Compar synthesis engine.

5. CONCLUSIONS

In this work the complex resonator filter has been exam-
ined, and results derived which are useful when applying
it in a time-varying context. These results are an approx-
imate normalisation of the filter to unity peak gain, and
a derivation of the stability condition for the filter under
parameter modulation. A new structure for dynamic FM
synthesis was proposed, based on an arbitrary number of
these filters configured to frequency modulate each other,
and a formal description of this system given. The system
is able to produce sounds within a very wide timbral space,
and possesses a unique organic quality due to the natural
exponential decay of the resonators and the use of audio
input as excitation. The resonators were implemented as a
SuperCollider UGen, and networks constructed from them
within this environment. The resulting tools were applied
within a performance system where the resonator network
is excited by both the environmental sound of the space of
the performance, and the signals generated by a cushion
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made of conductive thread.
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